

Electric Clamping

efficient and ready for serial production.

- Electric clamps are no longer innovations
- TÜNKERS has been supplying e-clamps for more than 20 years!
- ⇒ 2 disadvantages prevented industrial breakthrough
- 1. Efficiency

The technically complex concept including motor (servo), reduction gear unit and toggle-joint mechanism, lead to prices of factor 3-5 in comparison with pneumatic clamps.

 Lack of acceptance of 240/ 400 V – drives by production The blanket application of 240/ 400 V clamps is rejected by most plants for safety reasons.

New TÜNKERS electric compact clamp 24 V DC (low voltage)

0 0

İNK

Principle of electric clamp with DC motor (24 V)

- The desired opening angle can be set freely via the bottom end switch of the sensing system.
- The self-locking function of the spindle also ensures safe positioning in opened position.

	EK 25	EK 40/40.5	EK 50	EK 63	EK 80
Clamping moment	8 Nm	120 Nm	160 Nm	380 Nm	800 Nm
Holding moment	25 Nm	200 Nm	800 Nm	1500 Nm	2500 Nm
Weight	1,5 kg	3.15 kg	4.2 kg	5.2 kg	-
Length	212 mm	296 mm	315 mm	345 mm	-
Depth	70 mm	127 mm	130 mm	140 mm	-
Width	52 mm	50 mm	60 mm	70 mm	-

- 24 V DC voltage is already used by automotive plants for control and sensing technology
- Low voltage Safe operator protection!
- Broad and cost-effective range of very compact motors of different manufacturers on the market
- Only the energy that is actually needed is consumed. Maintanance of voltage is not required during standstill.
- Energy consumption is subject to loads. More energy can be saved by optimising the weight of the clamping point

- Additional 24 V net required (transformers and decentralised supply)
- ➤ High currents ⇒ limited cable lengths, large cross-sections and central power supply

8

TÜNKE

Motor terminal TMI8 Control unit for up to 8 clamps

View of the new motor terminal TMI8

Motor terminal TMI8

- Power supply for 8 clamps (engine performance and sensor)
- Integrated bus interface (Profi-Bus, Profi-Net, Ethernet, IP, etc.)
- Moving single electric clamps or groups,
- Motor island provides the tact cascading to prevent voltage peaks of the engines independently of the PLC
- · Control and feedback of e-clamp position to higher-level PLC
- The CPU is relieved and the positioning is done in a timely manner without influence of the CPU cycle time.
- · Display for status of the e-clamp
- Preselection and control (open / close) of the clamp with arrow keys
- 4 additional M12 connectors for up to 8 additional initiators or photocells

View Motor terminal TMI8 (version M23-con.) 11

Motor terminal with upstream power supply Unit

- The power supply of each motor terminal is safeguarded by a power supply unit.
- The input voltage is adjusted to the customer's grid.

0 0

- As an encapsulated version needs to be offered as well, electrochemical double layer capacitors are used because currents of 8 x 6 A are to be realised.
- The housing dimensions fit harmonically into the overall design of the motor terminal.

Motor terminal

Power supply unit

"Motor terminal" — Manager of power consumption

- ⇒ High net/ transformer output
- \Rightarrow 5-fold power consumption in total!

B. Cycle cascading through intelligent clamp control via "motor terminal"

- ⇒ Low net/ transformer output
- ⇒ 1.5-fold power consumption in total

Additional control variants (1/2) Control cabinet module TSM1

00

- Control cabinet module for Opening and Closing an Electrical Clamp
- Integrated H-bridge to gear the motor in both directions
- Housing compatible for control cabinet
- DIP switch to approach the movement speed in 4 steps
- Front LEDs

Additional control variants (2/2) Hand-held control

- Driving an electric clamp on handheld with integrated 24V battery for direct power supply of the clamp
- Tip operation and reduced speed for easy setup process

ndergeist serienmäßig

Energy and cost comparison Example: Fixture with 10 size-50 clamps

Size 50 series; 135° opening angle	Vario series		Electric clamp	
	Single clamp	Fixture	Single clamp	Fixture
Energy consumption (at 6 bar)	[1]	[1]	[kWh]	[kWh]
Energy consumption (I or kWh) (cycle)	1,71	17,10	0,00003	0,0003
Energy consumption (cycle) clamping point incl. compressed-air supply hose (3m) » 1,8 l	3,52	35,20		
Energy consumption (0,13 kWh/m³)	[kWh]	[kWh]	[kWh]	[kWh]
per day (1,000 cycles / day):	0,46	4,58	0,03	0,30
per year (250 days):	114	1.144	7,50	75
In the project (8 years):	915	9.151	60	600
CO2 consumption (600 g/kWh)	[kg]	[kg]	[kg]	[kg]
per day (1,000 cycles / day):	0,27	2,75	0,02	0,18
per year (250 days):	69	686	4,5	45
In the project (8 years):	549	5.491	36	360
Operating costs (1,43 ct/m³ — 11 ct/kWh)	[€]	[€]	[€]	F
per day (1,000 cycles / day):	0,050 €	0,50 €	0,003€	0,03€
per year (250 days):	12,58 €	125,82 €	0,83€	8,25€
In the project (8 years):	100,66 € (1.006,59 €	6,60 € 🤇	66,00 €

In terms of operating costs the electric clamp beats its pneumatic counterpart by the factor **15**

Contact:

Tünkers Maschinenbau GmbH Am Rosenkothen 4-12 40880 Ratingen		Telephone Telefax	+49 (0) 2102-45 17-0 +49 (0) 2102-45 17-9999	
E-mail:	info@tuenkers.de	Internet: www	w.tuenkers.de	
Mr Stefan Bröxkes		Telephone E-mail: stefan	+49 (0) 2102-45 17-167 1.broexkes@tuenkers.de	
Mr Christian Kleinschmidt		Telephone E-mail: christi	+49 (0) 2102-45 17-595 an.kleinschmidt@tuenkers.de	